Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Nat Genet ; 56(2): 258-272, 2024 Feb.
Article En | MEDLINE | ID: mdl-38200130

Skin color is highly variable in Africans, yet little is known about the underlying molecular mechanism. Here we applied massively parallel reporter assays to screen 1,157 candidate variants influencing skin pigmentation in Africans and identified 165 single-nucleotide polymorphisms showing differential regulatory activities between alleles. We combine Hi-C, genome editing and melanin assays to identify regulatory elements for MFSD12, HMG20B, OCA2, MITF, LEF1, TRPS1, BLOC1S6 and CYB561A3 that impact melanin levels in vitro and modulate human skin color. We found that independent mutations in an OCA2 enhancer contribute to the evolution of human skin color diversity and detect signals of local adaptation at enhancers of MITF, LEF1 and TRPS1, which may contribute to the light skin color of Khoesan-speaking populations from Southern Africa. Additionally, we identified CYB561A3 as a novel pigmentation regulator that impacts genes involved in oxidative phosphorylation and melanogenesis. These results provide insights into the mechanisms underlying human skin color diversity and adaptive evolution.


Albinism, Oculocutaneous , Melanins , Skin Pigmentation , Humans , Skin Pigmentation/genetics , Melanins/genetics , Alleles , Genomics , Pigmentation/genetics , Polymorphism, Single Nucleotide/genetics , Repressor Proteins/genetics
2.
Biochem Biophys Res Commun ; 684: 149066, 2023 12 03.
Article En | MEDLINE | ID: mdl-37866241

Epidemiological studies have found that high citrus fruit consumption was associated with higher risk of skin cancer. Citrus fruits and some vegetables contain furocoumarins, which may interact with ultraviolet radiation to induce skin cancer. We aimed to determine the effects of two furocoumarins, including 8-methoxypsoralen (8-MOP) and 6',7'-dihydroxybergamottin (DHB), on UVA-induced DNA damage in human epidermal melanocytes, the origin of melanoma. Our hypothesis was that these dietary furocoumarins increase UVA-induced DNA damage in melanocytes, compared to cells exposed to UV alone. We incubated melanocytes with 8-MOP or DHB, followed by exposure to physiological doses of UVA radiation. We used Western blots to quantify the UVA-induced DNA damage measured by the fraction of phosphorylated histone variant H2AX (γH2AX), which is a marker of DNA damage, relative to total H2AX (γH2AX/H2AX) in the presence or absence of furocoumarins. To quantify the UVA-induced change in γH2AX/H2AX, we calculated the UVA:Control ratio as the ratio of γH2AX/H2AX in UVA-exposed cells to that in cells without UVA (control). The mean UVA:Control ratios were borderline significantly higher for cells treated with 8-MOP and significantly higher for cells treated with DHB, compared to that of untreated cells. This study suggests that furocoumarins (particularly 8-MOP and DHB) enhance UVA-induced DNA damage in melanocytes, which is a potential novel mechanism for citrus and furocoumarins to elevate the risk of skin cancer.


Citrus , Furocoumarins , Skin Neoplasms , Humans , Furocoumarins/pharmacology , Methoxsalen/pharmacology , Ultraviolet Rays/adverse effects , Melanocytes , DNA Damage
3.
Molecules ; 28(13)2023 Jun 22.
Article En | MEDLINE | ID: mdl-37446583

Black poplar buds have high contents of many compounds with therapeutic potential, which are useful in cosmetics and the treatment of various dermatitis, respiratory diseases, etc. The aim of this study was to identify and exploit the local plant resources with biologically active properties from the Dobrogea area, Romania. For this purpose, materials were collected from the mentioned area, and macerates of black poplar were prepared in order to evaluate their qualities as antioxidant and antimicrobial agents. Three different black poplar buds' hydroalcoholic macerates were analyzed by the Folin-Ciocâlteau method to estimate the total content of phenolic compounds, by the HPLC-DAD method for identification and quantification of the main bioactive compounds and by the DPPH radical scavenging method to evaluate the antioxidant activity. All hydroalcoholic macerates showed high concentrations of phenolic compounds, the main individual compounds being gallic acid, chlorogenic acid, cinnamic acid, and methyl gallic acid. The antioxidant activity of the black poplar buds' hydroalcoholic macerates, evaluated by the DPPH radical scavenging test, showed high values, between 496 and 1200 mg GAE /100 g d.w. The Cd, Cu, Zn, Ni, and Pb concentrations released in dry poplar buds, determined by AAS, were below the detection limits. Hydroalcoholic macerates of black poplar were tested against two groups of gram-positive bacteria (Enterococcus and Staphylococcus) using an agar well diffusion assay. The in vitro inhibitory activities of the macerates were important and ranged from 8.2-9.4 mm inhibition zones (Staphylococcus) to 8.6 -10 mm inhibition zones (Enterococcus).


Anti-Infective Agents , Populus , Antioxidants/pharmacology , Antioxidants/chemistry , Populus/chemistry , Anti-Bacterial Agents/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Infective Agents/pharmacology , Phenols/pharmacology
4.
Methods Enzymol ; 654: 315-344, 2021.
Article En | MEDLINE | ID: mdl-34120720

Melanocytes are specialized cells that produce melanin pigments responsible for skin, hair, and eye pigmentation. The synthesis and storage of melanin occurs in unique lysosome-related organelles called melanosomes, which regulate melanin production via complex regulatory mechanisms. Maintenance of the melanosome luminal ionic environment and pH is crucial for proper function of the main melanogenic enzymes. Defects in genes encoding pH-regulating melanosomal proteins result in oculocutaneous albinism, which is characterized by hypopigmentation, impaired vision, and increased susceptibility to skin and eye cancers. We recently uncovered several ion channels and transporters that modulate melanin synthesis by acidifying or neutralizing the luminal pH of melanosomes. However, our understanding of how melanosomes and other related organelles maintain their luminal pH is far from complete. The study of melanosome pH regulation requires robust imaging and quantification tools. Despite recent advances in the development of such methods, many limitations remain, particularly for quantitative analysis of individual organelle pH. In this chapter, we will provide an overview of the available methods used for melanosome pH determination, including their advantages, limitations, and challenges. To address the critical, unmet need for reliable melanosome pH quantification tools, we engineered a novel genetically encoded, ratiometric pH sensor for melanosomes that we named RpHiMEL. Here, we describe the design and optimization of RpHiMEL, and provide a pH quantification method for individual melanosomes in live cells. We demonstrate that RpHiMEL is a highly versatile tool with the potential to advance our understanding of pH regulation in melanosomes and related organelles.


Melanocytes , Melanosomes , Hydrogen-Ion Concentration , Melanins , Pigmentation
5.
Mol Biol Cell ; 31(24): 2687-2702, 2020 11 15.
Article En | MEDLINE | ID: mdl-32966160

SLC45A2 encodes a putative transporter expressed primarily in pigment cells. SLC45A2 mutations cause oculocutaneous albinism type 4 (OCA4) and polymorphisms are associated with pigmentation variation, but the localization, function, and regulation of SLC45A2 and its variants remain unknown. We show that SLC45A2 localizes to a cohort of mature melanosomes that only partially overlaps with the cohort expressing the chloride channel OCA2. SLC45A2 expressed ectopically in HeLa cells localizes to lysosomes and raises lysosomal pH, suggesting that in melanocytes SLC45A2 expression, like OCA2 expression, results in the deacidification of maturing melanosomes to support melanin synthesis. Interestingly, OCA2 overexpression compensates for loss of SLC45A2 expression in pigmentation. Analyses of SLC45A2- and OCA2-deficient mouse melanocytes show that SLC45A2 likely functions later during melanosome maturation than OCA2. Moreover, the light skin-associated SLC45A2 allelic F374 variant restores only moderate pigmentation to SLC45A2-deficient melanocytes due to rapid proteasome-dependent degradation resulting in lower protein expression levels in melanosomes than the dark skin-associated allelic L374 variant. Our data suggest that SLC45A2 maintains melanosome neutralization that is initially orchestrated by transient OCA2 activity to support melanization at late stages of melanosome maturation, and that a common allelic variant imparts reduced activity due to protein instability.


Antigens, Neoplasm/metabolism , Melanocytes/metabolism , Membrane Transport Proteins/metabolism , Skin Pigmentation/physiology , Animals , Antigens, Neoplasm/physiology , Carrier Proteins/metabolism , Cell Line , Chloride Channels/metabolism , HeLa Cells , Humans , Lysosomes/metabolism , Male , Melanosomes/metabolism , Membrane Transport Proteins/physiology , Mice , Pigmentation/physiology , Protein Stability , Skin/metabolism
6.
eNeuro ; 7(5)2020.
Article En | MEDLINE | ID: mdl-32737180

The opsins have been studied extensively for their functions in visual phototransduction; however, the mechanisms underlying extraocular opsin signaling remain poorly understood. The first mammalian extraocular opsin to be discovered, opsin 3 (OPN3), was found in the brain more than two decades ago, yet its function remains unknown. A significant hindrance to studying OPN3 has been a lack of specific antibodies against mammalian OPN3, resulting in an incomplete understanding of its expression in the brain. Although Opn3 promoter-driven reporter mice have been generated to examine general OPN3 localization, they lack the regulated expression of the endogenous protein and the ability to study its subcellular localization. To circumvent these issues, we have created a knock-in OPN3-mCherry mouse model in which the fusion protein OPN3-mCherry is expressed under the endogenous Opn3 promoter. Viable and fertile homozygotes for the OPN3-mCherry allele were used to create an extensive map of OPN3-mCherry expression across the adult mouse brain. OPN3-mCherry was readily visualized in distinct layers of the cerebral cortex (CTX), the hippocampal formation (HCF), distinct nuclei of the thalamus, as well as many other regions in both neuronal and non-neuronal cells. Our mouse model offers a new platform to investigate the function of OPN3 in the brain.


Opsins , Rod Opsins , Animals , Brain/metabolism , Mice , Opsins/genetics , Rod Opsins/metabolism , Signal Transduction
7.
FASEB J ; 34(9): 11605-11623, 2020 09.
Article En | MEDLINE | ID: mdl-32658369

Exposure to high doses of solar long wavelength ultraviolet radiation (UVA) damages human skin via reactive oxygen species (ROS). Whether physiological UVA doses also generate ROS that has an effect on the skin remains unknown. We previously showed that in human epidermal melanocytes UVA activates a G-protein coupled signaling pathway that leads to calcium mobilization and increased melanin. Here, we report that ROS generated by the UVA phototransduction pathway are critical cellular messengers required to augment melanin. Using simultaneous UVA exposure and live-cell imaging of primary human melanocytes, we found that physiological doses of UVA generate two spatiotemporally distinct sources of ROS: one upstream of the G-protein activation that potentiates calcium responses, and another source downstream of calcium, in the mitochondria (ROSmito ). UVA-evoked signaling led to mitochondrial calcium uptake via mitochondrial calcium uniporter to promote ROSmito production leading to melanin synthesis. Our findings reveal a novel mechanism in which ROS function as signaling messengers necessary for melanin production, thus having a protective role in the UVA-induced skin response.


Calcium/metabolism , Melanins/biosynthesis , Melanocytes/radiation effects , Reactive Oxygen Species/metabolism , Ultraviolet Rays , Cells, Cultured , Foreskin/cytology , Humans , Infant, Newborn , Male , Melanocytes/cytology , Melanocytes/metabolism , Models, Biological , Signal Transduction/radiation effects
8.
Adv Biol Regul ; 75: 100668, 2020 01.
Article En | MEDLINE | ID: mdl-31653550

Because sunlight is essential for human survival, we have developed complex mechanisms for detecting and responding to light stimuli. The eyes and skin are major organs for sensing light and express several light-sensitive opsin receptors. These opsins mediate cellular responses to spectrally-distinct wavelengths of visible and ultraviolet light. How the eyes mediate visual phototransduction is well understood, but less is known about how the skin detects light. Both human and murine skin express a wide array of opsins, with one of the most highly expressed being the functionally elusive opsin 3 (OPN3). In this review we explore light reception, opsin expression and signaling in skin cells; we compile data elucidating potential functions for human OPN3 in skin, with emphasis on recent studies investigating OPN3 regulation of melanin within epidermal melanocytes.


Epidermis/metabolism , Gene Expression Regulation/physiology , Melanocytes/metabolism , Rod Opsins/biosynthesis , Signal Transduction/physiology , Animals , Humans , Mice
9.
Proc Natl Acad Sci U S A ; 116(23): 11508-11517, 2019 06 04.
Article En | MEDLINE | ID: mdl-31097585

Opsins form a family of light-activated, retinal-dependent, G protein-coupled receptors (GPCRs) that serve a multitude of visual and nonvisual functions. Opsin 3 (OPN3 or encephalopsin), initially identified in the brain, remains one of the few members of the mammalian opsin family with unknown function and ambiguous light absorption properties. We recently discovered that OPN3 is highly expressed in human epidermal melanocytes (HEMs)-the skin cells that produce melanin. The melanin pigment is a critical defense against ultraviolet radiation (UVR), and its production is mediated by the Gαs-coupled melanocortin 1 receptor (MC1R). The physiological function and light sensitivity of OPN3 in melanocytes are yet to be determined. Here, we show that in HEMs, OPN3 acts as a negative regulator of melanin production by modulating the signaling of MC1R. OPN3 negatively regulates the cyclic adenosine monophosphate (cAMP) response evoked by MC1R via activation of the Gαi subunit of G proteins, thus decreasing cellular melanin levels. In addition to their functional relationship, OPN3 and MC1R colocalize at both the plasma membrane and in intracellular structures, and can form a physical complex. Remarkably, OPN3 can bind retinal, but does not mediate light-induced signaling in melanocytes. Our results identify a function for OPN3 in the regulation of the melanogenic pathway in epidermal melanocytes; we have revealed a light-independent function for the poorly characterized OPN3 and a pathway that greatly expands our understanding of melanocyte and skin physiology.


Epidermis/metabolism , Melanocytes/metabolism , Pigmentation/physiology , Receptor, Melanocortin, Type 1/metabolism , Rod Opsins/metabolism , Cell Line , Cell Line, Tumor , Cell Membrane/metabolism , Cyclic AMP/metabolism , GTP-Binding Proteins/metabolism , HEK293 Cells , HeLa Cells , Humans , Melanins/metabolism , Signal Transduction/physiology , Skin/metabolism
10.
Blood ; 132(19): 2053-2066, 2018 11 08.
Article En | MEDLINE | ID: mdl-30213875

Although the pathogenesis of primary myelofibrosis (PMF) and other myeloproliferative neoplasms (MPNs) is linked to constitutive activation of the JAK-STAT pathway, JAK inhibitors have neither curative nor MPN-stem cell-eradicating potential, indicating that other targetable mechanisms are contributing to the pathophysiology of MPNs. We previously demonstrated that Abelson interactor 1 (Abi-1), a negative regulator of Abelson kinase 1, functions as a tumor suppressor. Here we present data showing that bone marrow-specific deletion of Abi1 in a novel mouse model leads to development of an MPN-like phenotype resembling human PMF. Abi1 loss resulted in a significant increase in the activity of the Src family kinases (SFKs), STAT3, and NF-κB signaling. We also observed impairment of hematopoietic stem cell self-renewal and fitness, as evidenced in noncompetitive and competitive bone marrow transplant experiments. CD34+ hematopoietic progenitors and granulocytes from patients with PMF showed decreased levels of ABI1 transcript as well as increased activity of SFKs, STAT3, and NF-κB. In aggregate, our data link the loss of Abi-1 function to hyperactive SFKs/STAT3/NF-κB signaling and suggest that this signaling axis may represent a regulatory module involved in the molecular pathophysiology of PMF.


Adaptor Proteins, Signal Transducing/genetics , Bone Marrow/pathology , Cytoskeletal Proteins/genetics , Gene Deletion , Primary Myelofibrosis/genetics , Primary Myelofibrosis/pathology , Animals , Bone Marrow/metabolism , Cell Self Renewal , Cells, Cultured , Down-Regulation , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , NF-kappa B/metabolism , Primary Myelofibrosis/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , src-Family Kinases/metabolism
11.
Sci Signal ; 9(444): ra87, 2016 09 06.
Article En | MEDLINE | ID: mdl-27601729

Bone morphogenetic proteins (BMPs) function in most tissues but have cell type-specific effects. Given the relatively small number of BMP receptors, this exquisite signaling specificity requires additional molecules to regulate this pathway's output. The receptor tyrosine kinase MuSK (muscle-specific kinase) is critical for neuromuscular junction formation and maintenance. Here, we show that MuSK also promotes BMP signaling in muscle cells. MuSK bound to BMP4 and related BMPs with low nanomolar affinity in vitro and to the type I BMP receptors ALK3 and ALK6 in a ligand-independent manner both in vitro and in cultured myotubes. High-affinity binding to BMPs required the third, alternatively spliced MuSK immunoglobulin-like domain. In myoblasts, endogenous MuSK promoted BMP4-dependent phosphorylation of SMADs and transcription of Id1, which encodes a transcription factor involved in muscle differentiation. Gene expression profiling showed that MuSK was required for the BMP4-induced expression of a subset of genes in myoblasts, including regulator of G protein signaling 4 (Rgs4). In myotubes, MuSK enhanced the BMP4-induced expression of a distinct set of genes, including transcripts characteristic of slow muscle. MuSK-mediated stimulation of BMP signaling required type I BMP receptor activity but was independent of MuSK tyrosine kinase activity. MuSK-dependent expression of Rgs4 resulted in the inhibition of Ca(2+) signaling induced by the muscarinic acetylcholine receptor in myoblasts. These findings establish that MuSK has dual roles in muscle cells, acting both as a tyrosine kinase-dependent synaptic organizing molecule and as a BMP co-receptor that shapes BMP transcriptional output and cholinergic signaling.


Bone Morphogenetic Protein 4/metabolism , Myoblasts/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Cholinergic/metabolism , Signal Transduction/physiology , Animals , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Cell Line , Humans , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Protein 1/metabolism , Mice , Myoblasts/cytology , RGS Proteins/genetics , RGS Proteins/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptors, Cholinergic/genetics , Smad Proteins/genetics , Smad Proteins/metabolism
13.
Sci Rep ; 6: 26570, 2016 05 27.
Article En | MEDLINE | ID: mdl-27231233

Intracellular organelles mediate complex cellular functions that often require ion transport across their membranes. Melanosomes are organelles responsible for the synthesis of the major mammalian pigment melanin. Defects in melanin synthesis result in pigmentation defects, visual deficits, and increased susceptibility to skin and eye cancers. Although genes encoding putative melanosomal ion transporters have been identified as key regulators of melanin synthesis, melanosome ion transport and its contribution to pigmentation remain poorly understood. Here we identify two-pore channel 2 (TPC2) as the first reported melanosomal cation conductance by directly patch-clamping skin and eye melanosomes. TPC2 has been implicated in human pigmentation and melanoma, but the molecular mechanism mediating this function was entirely unknown. We demonstrate that the vesicular signaling lipid phosphatidylinositol bisphosphate PI(3,5)P2 modulates TPC2 activity to control melanosomal membrane potential, pH, and regulate pigmentation.


Calcium Channels/metabolism , Eye/cytology , Melanosomes/metabolism , Pigmentation , Skin/cytology , Animals , Calcium Channels/genetics , Cells, Cultured , Eye/metabolism , Hydrogen-Ion Concentration , Melanocytes/cytology , Melanocytes/metabolism , Melanosomes/physiology , Membrane Potentials , Mice , Patch-Clamp Techniques , Phosphatidylinositol 4,5-Diphosphate/metabolism , Skin/metabolism
14.
Photochem Photobiol ; 91(1): 117-23, 2015.
Article En | MEDLINE | ID: mdl-25267311

Human skin is constantly exposed to solar light containing visible and ultraviolet radiation (UVR), a powerful skin carcinogen. UVR elicits cellular responses in epidermal cells via several mechanisms: direct absorption of short-wavelength UVR photons by DNA, oxidative damage caused by long-wavelength UVR, and, as we recently demonstrated, via a retinal-dependent G protein-coupled signaling pathway. Because the human epidermis is exposed to a wide range of light wavelengths, we investigated whether opsins, light-activated receptors that mediate photoreception in the eye, are expressed in epidermal skin to potentially serve as photosensors. Here we show that four opsins­OPN1-SW, OPN2, OPN3 and OPN5­are expressed in the two major human epidermal cell types, melanocytes and keratinocytes, and the mRNA expression profile of these opsins does not change in response to physiological UVR doses. We detected two OPN3 splice variants present in similar amounts in both cell types and three OPN5 splice isoforms, two of which encode truncated proteins. Notably, OPN2 and OPN3 mRNA were significantly more abundant than other opsins and encoded full-length proteins. Our results demonstrate that opsins are expressed in epidermal skin cells and suggest that they might initiate light-induced signaling pathways, possibly contributing to UVR phototransduction.


Opsins/metabolism , Skin/metabolism , Cells, Cultured , Humans
15.
Elife ; 3: e04543, 2014 Dec 16.
Article En | MEDLINE | ID: mdl-25513726

Intracellular ion channels are essential regulators of organellar and cellular function, yet the molecular identity and physiological role of many of these channels remains elusive. In particular, no ion channel has been characterized in melanosomes, organelles that produce and store the major mammalian pigment melanin. Defects in melanosome function cause albinism, characterized by vision and pigmentation deficits, impaired retinal development, and increased susceptibility to skin and eye cancers. The most common form of albinism is caused by mutations in oculocutaneous albinism II (OCA2), a melanosome-specific transmembrane protein with unknown function. Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production. Expression of OCA2 increases organelle pH, suggesting that the chloride channel might regulate melanin synthesis by modulating melanosome pH. Thus, a melanosomal anion channel that requires OCA2 is essential for skin and eye pigmentation.


Chloride Channels/metabolism , Intracellular Space/metabolism , Pigmentation , Albinism, Oculocutaneous/metabolism , Animals , Anions/metabolism , Anura , Carrier Proteins/metabolism , Cell Line , Endosomes/metabolism , Green Fluorescent Proteins/metabolism , Humans , Hydrogen-Ion Concentration , Lysosomes/metabolism , Melanosomes/metabolism , Membrane Proteins/metabolism , Mice , Mutation/genetics
16.
Genomics ; 104(6 Pt B): 482-9, 2014 Dec.
Article En | MEDLINE | ID: mdl-25451175

Because human epidermal melanocytes (HEMs) provide critical protection against skin cancer, sunburn, and photoaging, a genome-wide perspective of gene expression in these cells is vital to understanding human skin physiology. In this study we performed high throughput sequencing of HEMs to obtain a complete data set of transcript sizes, abundances, and splicing. As expected, we found that melanocyte specific genes that function in pigmentation were among the highest expressed genes. We analyzed receptor, ion channel and transcription factor gene families to get a better understanding of the cell signaling pathways used by melanocytes. We also performed a comparative transcriptomic analysis of lightly versus darkly pigmented HEMs and found 16 genes differentially expressed in the two pigmentation phenotypes; of those, only one putative melanosomal transporter (SLC45A2) has known function in pigmentation. In addition, we found 166 transcript isoforms expressed exclusively in one pigmentation phenotype, 17 of which are genes involved in signal transduction. Our melanocyte transcriptome study provides a comprehensive view and may help identify novel pigmentation genes and potential pharmacological targets.


Epidermis/metabolism , Genome, Human , Melanocytes/metabolism , Skin Pigmentation/genetics , Transcriptome , Cell Line , Epidermal Cells , Gene Expression Profiling , Humans , Ion Channels/genetics , Ion Channels/metabolism , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Arch Biochem Biophys ; 563: 35-41, 2014 Dec 01.
Article En | MEDLINE | ID: mdl-25034214

Skin melanocytes and ocular pigment cells contain specialized organelles called melanosomes, which are responsible for the synthesis of melanin, the major pigment in mammals. Defects in the complex mechanisms involved in melanin synthesis and regulation result in vision and pigmentation deficits, impaired development of the visual system, and increased susceptibility to skin and eye cancers. Ion transport across cellular membranes is critical for many biological processes, including pigmentation, but the molecular mechanisms by which it regulates melanin synthesis, storage, and transfer are not understood. In this review we first discuss ion channels and transporters that function at the plasma membrane of melanocytes; in the second part we consider ion transport across the membrane of intracellular organelles, with emphasis on melanosomes. We discuss recently characterized lysosomal and endosomal ion channels and transporters associated with pigmentation phenotypes. We then review the evidence for melanosomal channels and transporters critical for pigmentation, discussing potential molecular mechanisms mediating their function. The studies investigating ion transport in pigmentation physiology open new avenues for future research and could reveal novel molecular mechanisms underlying melanogenesis.


Ion Transport/physiology , Pigmentation/physiology , Animals , Calcium Signaling , Endosomes/metabolism , Humans , Intracellular Membranes/metabolism , Ion Channels/metabolism , Lysosomes/metabolism , Melanins/biosynthesis , Melanocytes/metabolism , Melanosomes/metabolism , Membrane Potentials
18.
J Gen Physiol ; 143(2): 203-14, 2014 Feb.
Article En | MEDLINE | ID: mdl-24470488

While short exposure to solar ultraviolet radiation (UVR) can elicit increased skin pigmentation, a protective response mediated by epidermal melanocytes, chronic exposure can lead to skin cancer and photoaging. However, the molecular mechanisms that allow human skin to detect and respond to UVR remain incompletely understood. UVR stimulates a retinal-dependent signaling cascade in human melanocytes that requires GTP hydrolysis and phospholipase C ß (PLCß) activity. This pathway involves the activation of transient receptor potential A1 (TRPA1) ion channels, an increase in intracellular Ca(2+), and an increase in cellular melanin content. Here, we investigated the identity of the G protein and downstream elements of the signaling cascade and found that UVR phototransduction is Gαq/11 dependent. Activation of Gαq/11/PLCß signaling leads to hydrolysis of phosphatidylinositol (4,5)-bisphosphate (PIP2) to generate diacylglycerol (DAG) and inositol 1, 4, 5-trisphosphate (IP3). We found that PIP2 regulated TRPA1-mediated photocurrents, and IP3 stimulated intracellular Ca(2+) release. The UVR-elicited Ca(2+) response appears to involve both IP3-mediated release from intracellular stores and Ca(2+) influx through TRPA1 channels, showing the fast rising phase of the former and the slow decay of the latter. We propose that melanocytes use a UVR phototransduction mechanism that involves the activation of a Gαq/11-dependent phosphoinositide cascade, and resembles light phototransduction cascades of the eye.


GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , GTP-Binding Protein alpha Subunits, Gq-G11/radiation effects , Light Signal Transduction/physiology , Light Signal Transduction/radiation effects , Melanocytes/metabolism , Melanocytes/radiation effects , Cells, Cultured , HEK293 Cells , Humans , Infant, Newborn , Male , Signal Transduction/physiology , Ultraviolet Rays
19.
Data Brief ; 1: 70-2, 2014 Dec.
Article En | MEDLINE | ID: mdl-26217690

The data in this article contains data related to the research articled entitle Genome-wide transcriptome analysis of human epidermal melanocytes. This data article contains a complete list of gene and transcript isoform expression in human epidermal melanocytes. Transcript isoforms that are differentially expressed in lightly versus darkly pigmented melanocytes are identified. We also provide data showing the gene expression profiles of cell signaling gene families (receptors, ion channels, and transcription factors) in melanocytes. The raw sequencing data used to perform this transcriptome analysis is located in the NCBI Sequence Read Archive under Accession No. SRP039354 http://dx.doi.org/10.7301/Z0MW2F2N.

20.
Channels (Austin) ; 7(4): 243-8, 2013.
Article En | MEDLINE | ID: mdl-23764911

Exposure of human skin to low doses of solar UV radiation (UVR) causes increased pigmentation, while chronic exposure is a powerful risk factor for skin cancers. The mechanisms mediating UVR detection in skin, however, remain poorly understood. Our recent studies revealed that UVR activates a retinal-dependent G protein-coupled signaling pathway in melanocytes. This phototransduction pathway leads to the activation of transient receptor potential A1 (TRPA1) ion channels, elevation of intracellular calcium (Ca( 2+)) and rapid increase in cellular melanin content. Here we report that physiological doses of solar-like UVR elicit a retinal-dependent membrane depolarization in human epidermal melanocytes. This transient depolarization correlates with delayed inactivation time of the UVR-evoked photocurrent and with sustained Ca( 2+) responses required for early melanin synthesis. Thus, the cellular depolarization induced by UVR phototransduction in melanocytes is likely to be a critical signaling mechanism necessary for the protective response represented by increased melanin content.


Light Signal Transduction/radiation effects , Melanocytes/cytology , Melanocytes/radiation effects , Ultraviolet Rays/adverse effects , Calcium/metabolism , Calcium Channels/metabolism , Dose-Response Relationship, Radiation , Epidermal Cells , Humans , Melanins/biosynthesis , Melanocytes/metabolism , Nerve Tissue Proteins/metabolism , TRPA1 Cation Channel , Transient Receptor Potential Channels/metabolism
...